Mass transfer is the net movement of mass from one location (usually meaning stream, phase, fraction, or component) to another. Mass transfer occurs in many processes, such as absorption, evaporation, drying, precipitation, membrane filtration, and distillation. Mass transfer is used by different scientific disciplines for different processes and mechanisms. The phrase is commonly used in engineering for physical processes that involve diffusive and convection transport of chemical species within system.
Some common examples of mass transfer processes are the evaporation of water from a pond to the atmosphere, the purification of blood in the and liver, and the distillation of alcohol. In industrial processes, mass transfer operations include separation of chemical components in distillation columns, absorbers such as scrubbers or stripping, adsorbers such as activated carbon beds, and liquid-liquid extraction. Mass transfer is often coupled to additional transport processes, for instance in industrial . These towers couple heat transfer to mass transfer by allowing hot water to flow in contact with air. The water is cooled by expelling some of its content in the form of water vapour.
The driving force for mass transfer is usually a difference in chemical potential, when it can be defined, though other thermodynamics may couple to the flow of mass and drive it as well. A chemical species moves from areas of high chemical potential to areas of low chemical potential. Thus, the maximum theoretical extent of a given mass transfer is typically determined by the point at which the chemical potential is uniform. For single phase-systems, this usually translates to uniform concentration throughout the phase, while for multiphase systems chemical species will often prefer one phase over the others and reach a uniform chemical potential only when most of the chemical species has been absorbed into the preferred phase, as in liquid-liquid extraction.
While thermodynamic equilibrium determines the theoretical extent of a given mass transfer operation, the actual rate of mass transfer will depend on additional factors including the flow patterns within the system and the mass diffusivity of the species in each phase. This rate can be quantified through the calculation and application of mass transfer coefficients for an overall process. These mass transfer coefficients are typically published in terms of dimensionless numbers, often including Péclet numbers, , , and , among others.
|
|